
Automated Stock Trading using Trust Region Policy Optimization

Chima Ezeilo
University of Texas at Austin
chimae@utexas.edu

Charles Nimo
University of Texas at Austin

nimo@utexas.edu

Video: https://youtu.be/zOqBT7gHhWQ

Github: https://github.com/princenimo/

DRL-for-Automated-Stock-Trading-.git

Abstract

Everyday millions of traders around the world
aim to trade stocks to make money. However,
stock trading has never been easy. Stock prices
depend on multiple factors and it is very diffi-
cult to develop a good strategy and make de-
cisions such as when to buy? when to hold?
and when to sell? Lately, Deep Reinforcement
learning (DRL) agents have proven to show
great promise in games such as Chess and Go.
However, it remains a big challenge to design
a profitable strategy in a complex and dynamic
stock market. This paper explores the appli-
cation of Trust Region Policy Optimization
(TRPO), a policy gradient method,to learn an
optimal strategy for high portfolio automated
stock trading. We model the stock trading pro-
cess as a Markov Decision Process (MDP) and
then formulate our trading goal as a maximiza-
tion problem. This agent learns to automati-
cally position itself to win the market, specif-
ically, it decides where to trade, at what price,
and what quantity. We also train three other
reinforcement learning algorithms, Soft Ac-
tor Critic (SAC), Proximal Policy Optimiza-
tion(PPO), and Twin Delayed DDPG (TD3)
to serve as baselines to compare their per-
formances.In this experiment, we choose the
Dow Jones Industrial Average (DJIA) 30 con-
stituent stocks as they are the most popular
stocks for portfolio allocation. We demon-
strate the credibility and advantages of TRPO
in financial markets for strategic decision mak-
ing in portfolio allocation.

1 Introduction
The stock exchange floor was long ago the main hub for
market transactions. It was central to traders and bro-
kers that actually did the buying, selling, and negotiat-

ing on the physical exchange floor. However, this was
before the evolution of electronic trading platforms.
Over the last decade, markets have seen the widespread
adoption of Automated Trading Systems that are used
to make investment decisions in a fully automatized
way with greater speeds than any human equivalent.
Profitable automated stock trading is crucial to invest-
ment companies and hedge funds. Hedge funds such
as Citadel, Blackrock Advisors, Renaissance Technolo-
gies, and several others are employing mathematicians,
physicists, and other scientists to develop sophisticated
algorithms to extract trading signals from vast amounts
of data and automate trading. However, very rarely do
these hedge funds publish their profit-generating ”se-
cret sauce” to keep their competitive advantage and not
much can be found in literature.

Reinforcement learning has become increasingly
popular over the last few years. Notably, MIT Technol-
ogy Review has chosen Deep Learning and reinforce-
ment learning as some of the most influential break-
through technologies in the last decade. Most recently
deep learning and reinforcement learning has been
combined together to form the field of deep reinforce-
ment learning (DRL) which has shown great promise
in various fields ranging from games and robotics to
business and finance. In 2017, Google DeepMind de-
veloped AlphaGo Zero which managed to consistently
beat the world’s best go players without human in-
tervention (Adebiyi et al., 2014). Later, in 2019 re-
searchers at Facebook and Carnegie Mellon University
developed Pluribus, a poker bot that uses DRL to beat
the world’s leading poker players (Brown and Sand-
holm, 2019).

The stock market contains many interference factors,
rapid change, and insufficient periodic data. Having
such incomplete information, A single-objective su-
pervised learning model would have difficulty dealing
with such serialization decision problems. Thus rein-
forcement learning is one of the effective ways to solve
such problems. Moreover, Deep Reinforcement learn-
ing has been one of the leading applications of artificial
intelligence in the world of finance, portfolio optimiza-
tion, and stock trading. Most of the work in this area
is fairly new. Of late, many recent strategies have been
explored using different recent advancements in DRL.

https://youtu.be/zOqBT7gHhWQ
https://github.com/princenimo/DRL-for-Automated-Stock-Trading-.git
https://github.com/princenimo/DRL-for-Automated-Stock-Trading-.git

(Zhang et al., 2019) applied DQN, PG, and A2C algo-
rithms to trade continuous futures contracts and Theate
and Ernst present a novel trading strategy using Deep
Q-Networks (DQN) (Théate and Ernst, 2020).

In this work, we model the stock trading process
as a Markov Decision Process (MDP), taking into ac-
count the stochastic and interactive nature of the trad-
ing market. The agent learns to trade stocks over a
period of time and aims to maximize profits. Trad-
ing with a large account, at any given time (episode),
an agent observes its current state (balance, opening
high/low prices, closing price,trading volume, techni-
cal indicators, and multiple levels of granularity), se-
lects and performs an action (buy/sell/hold), observes a
subsequent state and receives some reward signal (dif-
ference in portfolio position). We train an agent that
decides where to trade, at what price, and what quan-
tity. For this agent, we apply Trust Region Policy op-
timization (TRPO) an On-policy reinforcement algo-
rithm on the environment to perform portfolio alloca-
tion of the Dow Jones 30 constituents stocks. Addi-
tionally, we train other policy gradient methods PPO,
TD3, and SAC to serve as baselines to evaluate their
performances against this approach.

2 Related Works
Automated stock trading has been examined exten-
sively through the years. Traditional methods, such as
those in (Yan and Guosheng, 2015) focus on making
stock predictions based on time-series analysis models
like Kalman Filters, autoregressive models and logistic
regression analysis (Adebiyi et al., 2014). For these
kind of models,provided an indicator of stock price,
they can represent it as a stochastic process and take
the historical data to fit the process.

However these approaches for stock prediction have
three main limitations. Firstly, these models rely heav-
ily on the selection of indicators which are usually cho-
sen manually and even harder to optimize without ex-
pertise finance knowledge. Secondly, the hypothesized
stochastic processes aren’t always compatible with the
real world volatile stocks. Finally, the models can only
consider a few indicators because their inference capa-
bility increases exponentially as the number of indica-
tors increases. Thus, it is very difficult for these models
to describe stock that is influenced by many factors.

There have been other approaches in the past which
have developed automated stock trading strategies. In
(Feng et al., 2004) there are two agents, the first is de-
signed to exploit market volatility without considering
the directions of price movement. It uses a pair of buy
and sell orders of the same volume on a single stock
at the same time without predicting the future move-
ment of the stock. The second agent only uses techni-
cal analysis where it is designed to do the opposite of
the initial strategy of buying stock when the price goes
up and selling when it goes down.

There have been other successful strategies that

make use of reinforcement learning to achieve good
performance in non stationary environments using lit-
tle knowledge given. In this work, they use tile cod-
ing (Yu and Stone, 2003; Feng et al., 2004) to allow
for generalization to unseen instances of the continu-
ous state-action space. The second agent uses linear
regression model of market dynamics to guide order
placement. This helps it to find long-term trends in
price fluctuations. The third approach presented in this
research combines seeks to combine both regression-
based price prediction and market making to execute
successful trading strategies. However, in comparison
to our work these traditional methods fail to fully cap-
ture a wide range of factors that influence market per-
formance (Sherstov and Stone, 2005).

More modern methods, however, use a variety
of machine learning strategies to tackle the auto-
mated trading problem. Many approaches aimed to
combine Reinforcement Learning with Deep Learn-
ing and Natural Language Processing models such as
Recurrent Neural Networks (RNN), Gated Recurrent
Units (GRUs), and Long-Short Term Memory cells
(LSTMs). In (Chen and Gao, 2019), the authors used a
variety of a Deep Q-Network (DQN) called Deep Re-
current Q-Network (DRQN) which uses an RNN at the
basis of the DQN to process temporal sequences bet-
ter. Similarly, the authors in (Wu et al., 2020) intro-
duced GRUs to extract features from the stock mar-
ket for its Deep Reinforcement Q-Learning System.
The GRUs took raw data in the form of Opening,
High, Low, Close Values (OHLCV) and technical in-
dicators such as Moving Average (MA), Exponential
Moving Average (EMA), and Moving Average Con-
vergence/Divergence (MACD) to capture the patterns
or features behind the dynamic states of the market. In
(Deng et al., 2017), the authors implemented a deep RL
based algorithmic trading agent using real-time data to
question the possibility of beating human experienced
human traders. They also used an RNN to extract in-
formation from technical indicators to feed to the RL
agent as well as Deep and Fuzzy Learning for feature
extraction.

Similar to all three authors we will also be im-
plementing a Deep Reinforcement Learning approach.
However, we will have a much looser restriction on the
amount of stocks we trade (one stock in the first two
authors’ case), and will work with a portfolio contain-
ing a variety of different stocks; unlike the third author
which restricted their model to 3 contracts (2 commodi-
ties: Sugar and Silver, and one stock-index future IF).
Additionally, through FinRL we also utilize backtest-
ing which can collect a variety of risk measurements,
such as Sharpe ratio, which weren’t considered in the
first authors’ study.

In (Liu et al., 2020b), the authors proposed an en-
semble system using deep RL for portfolio manage-
ment. The ensemble model has 3 algorithms at its core
(PPO, A2C, DDPG), and works by having a growing

training window and a rolling validation window time
period which are chosen continuously to pick the best
performing algorithm over the validation set. The moti-
vation behind this is that each trading agent is sensitive
to different types of trends. One agent performs well in
a bullish trend, but acts bad in a bearish trend while an-
other is adjusted to a more volatile market. We differ by
not using an ensemble strategy, but testing the perfor-
mance of TRPO with A2C, PPO, DDPG, and DQN as
our baseline. Although, similar to the authors we both
tackle the issue of automated portfolio investment.

While the use of DL with RL to automate stock
trading looks promising, one aspect that is commonly
overlooked is the impact of real-world events on the
value of different stocks. For example, with the rise
of COVID-19 many airline stocks decreased sharply
in value. Additionally, cryptocurrencies such as Do-
gecoin also experienced an increase in value in some
point of time after tweets from Elon Musk and expo-
sure to TikTok. In (Azhikodan et al., 2019), the authors
combined a deep RL approach with sentiment analysis
to predict future movements based on financial news.
A Recurrent Convolutional Neural Network was used
for classifying news sentiment while DDPG was used
for the RL agent. However, unlike the authors we will
be accounting for risk by using measurements such as
the Sharpe Ratio. Also, we will not be incorporating
any sentiment analysis into our model (maybe for fu-
ture work).

3 Methods
3.1 Environment

Figure 1: (Top) Elegant RL Framework and (Bottom)
Fin RL Framework

The environment we will be working in is
the Elegant-Fin RL environment created by the
AI4Finance Foundation (Liu et al., 2021b, 2020a,
2021a); an overview of the environments are shown in

Figure 1. These environments are designed for single
stock trading, with the trading process being modeled
as a Markov Decision Process (MDP) and the trading
goal gets formulated as a maximization problem. The
state space consists of a variety of information (fea-
tures) a trader may use to execute a trade. This infor-
mation consists of the balance at time t, the number of
shares (for each stock) at time t, a variety of technical
indicators (ie. high, low, open, close, volume, relative
strength index), a turbulence index to measure extreme
asset price fluctuation, and the Chicago Board Op-
tions Exchange’s (CBOE) Volatility Index (VIX) which
measures a constant 30-day expected volatility of the
market. The action space is a D dimensional vector (D
being the number of stocks owned) in which the values
ranges from {−k, ...,−1, 0, 1, ..., k} where k denotes
the number of shares to buy/sell for any given stock.
A negative value means the agent will sell k shares, a
positive value means the agent will buy k shares, and a
value of 0 means the agent will hold onto its shares for
that stock. The reward function is the change in port-
folio value when an action a is taken in state s and the
agent arrives at the new state s′ (r(s, a, s′) = v′ − v,
where v′ and v represent the portfolio values at state s
and s′ respectively).

3.2 Data Collection
The data for the stocks are collected using the Yahoo
Finance API. The stock data can come from a variety
of stock index markets such as Dow Jones, NASDAQ,
SP 500, Hang Send, CSI 300, and many more. When
retrieving the data, the start and end date for the trading
information can also be specified as well as which tick-
ers to collect (ie. AAPL and MSFT). For this study we
do a comparative evaluation of TRPO against other re-
inforcement learning algorithms - TD3, PPO, and SAC
to serve as baselines against this approach.

Table 1: Technical Indicators

Technical Indicator Definition

Open Price at beginning of trade period
High Maximum Price in trade period
Low Minimum Price in trade period
Close Price at end of trade period

Moving Average Convergence Divergence Relationship between two moving averages
Bollinger Upper Band Std. Dv. Level Above Moving Price
Bollinger Lower Band Std. Dv. Level Below Moving Price

Relative Strength Index (30) Magnitude of recent price changes over 30 days
Commodity Channel Index (30) Current price level relative to average price level over 30 days

Directional Movement Index Magnitude of price directionality
Close Simple Moving Average (30) Average of Closing prices over 30 days
Close Simple Moving Average (60) Average of Closing prices over 60 days

Table 2: Collected Measures

Measure Meaning

Annual Return Return of an investment over a year
Cumulative Return Total Return from a certain period of time up to the present
Annual Volatility Variance of returns over a year

Sharpe Ratio Return of an investment compared to its risk
Calmar Ratio Measures risk-adjusted performance

Max Drawdown Indicator of downside risk over a specified time period
Omega Ratio Weighted risk-return ratio for a given level of expected return
Sortino Ratio Variation of the Sharpe ratio that only factors in downside risk

Tail Ratio Ratio between the 95th and (absolute) 5th percentile of the daily returns distribution
Daily Value at Risk Predicts the greatest possible losses over a daily time frame.

3.3 Trust Region Policy Optimization
TRPO is an on-policy, policy gradient algorithm which
updates policies while satisfying a constraint on how
close the new/old policies are allowed to be (Schul-
man et al., 2015; Achiam, 2018). The constraint is in
terms of the Kullback-Leibler divergence (measure of
how close probability distributions are), and the pseu-
docode for the algorithm is shown in Figure 2. The
constraint is called the trust region constraint and is
added to make sure that our agent is in a safe region. In
short, in TRPO, we take a step toward the direction that
improves our policy and maximizes our reward but we
also need to make sure that the trust region constraint is
satisfied. It uses conjugate gradient descent to optimize
the network parameter while satisfying the constraint.
TRPO guarantees monotonic policy improvement and
has also achieved excellent results in various continu-
ous environments.

Figure 2: Pseudocode for the Trust Region Policy Op-
timization algorithm

3.4 Proximal Policy Optimizaton
Proximal Policy Optimization, abbreviated as PPO is
an on-policy algorithm. It can be applied towards en-
vironments with both discrete and continuous action
spaces. There are two classes of PPO: PPO-Penalty
and PPO-clip.

PPO-Penalty approximates a KL-constrained update
like TRPO but penalizes the KL-divergence in the ob-
jective function if the new policy is different from the
old policy. It automatically adjust the penalty coeffi-
cient during training to scale appropriately.(Schulman
et al., 2017)

Figure 3: PPO with Adaptive KL Penalty

PPO-clip, in comparison to PPO-penalty doesn’t
have a KL-divergence term. It uses a specialized clip-
ping in the objective function to limit the size of the
update so that the difference between the new and old
policies remain small (Schulman et al., 2017)

Figure 4: PPO with Clipped Objective

3.5 Twin Delayed DDPG
Twin Delayed Deep Deterministic policy Gradient or
TD3 for short has taken over for the replacement of
DDPG, a actor-critic algorithm. TD3 addresses the sta-
bility and inefficiency challenges found in DDPG. It
learns two Q networks rather than one which helps to
overcome the maximization bias. During training, the
policy and the target networks are updated more slowly,
hence where the reason for the word ”delayed” in the
algorithm’s name. (Fujimoto et al., 2018)

Figure 5: Twin Delayed DDPG Algorithm

3.6 Soft Actor Critic
Soft Actor Critic (SAC) method is an algorithm that
uses stochastic policies, entropy regularization, and a
few other tricks to stabilize learning and score higher
than DDPG. It uses entropy that measures how di-
verse/random the actions suggested by a policy are as
part of the reward to encourage exploration. With en-
tropy regularization, the agent gets a bonus reward at
each time step. Learning can be accelerated later on by
increasing entropy but may also prevent the policy from
converging prematurely to a bad local optimum. SAC
can be used with both continuous and discrete action

spaces. (Haarnoja et al., 2018)

Figure 6: Soft Actor Critic Algorithm

4 Experimental Setup
Tables 4 and 5 show the stock ticker information and
technical indicators that we use, respectively. Table 6
shows the additional hyperparameters we use for our
algorithms. Our baseline models are: Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017), Twin
Delayed DDPG (TD3) (Fujimoto et al., 2018), and
Soft Actor-Critic (SAC) (Haarnoja et al., 2018). All
of which are implemented in the base code for the
Elegant-Fin RL environment. We adapt the TRPO im-
plementation from (Kostrikov, 2017) and adjust it to
create an agent which can train in the Elegant-Fin RL
framework. We run the model for 32,768 timesteps,
evaluating it once we hit the startevaldate (specified
in the hyperparameter table) using backtesting to get an
unbiased measure of performance for the agent. The
measures we collect and their meaning are showed in
table 7.

5 Results
Table 8 shows the performance of all the models in
terms of the collected metrics. TD3 obtained the high-
est annual and cumulative returns with TRPO trailing
behind; meaning that these two models made the most
money after backtesting. PPO obtained the highest an-
nual volatility, making it the riskiest agent. This is fur-
ther corroborated with it also having the highest (most
negative) daily value at risk, max drawdown, and tail
ratio. Its tail ratio of 0.78 means that losses are 1.28
times as bad as profits; so out of all the agents, losses
are not as bad as profits! TRPO gets the highest Sharpe
and Calmar ratio; implying that it performs well with
risk-free investments and risk-adjusted returns respec-
tively. The Sortino ratio is similar to the Sharpe ratio so
it is no surprise that TRPO also has the highest Sortino
ratio as well. The omega ratio determines the chances

of winning in comparison to losing for a given invest-
ment. Since TRPO has the highest omega ratio, this
means it took good risks and has a high chance of win-
ning on the risks that it takes.

Table 3: Agent Backtesting Results

Algorithm Ann. Return Cumu. Return Ann. Volatility Sharpe Ratio Calmar Ratio Max Drawdown Omega Ratio Sortino Ratio Tail Ratio D.V. at Risk
TRPO 23.004% 51.424% 17.735% 1.26 1.74 -13.189% 1.28 1.81 1.07 -2.146%
SAC 16.225% 35.162% 29.095% 0.66 0.42 -39.076% 1.15 0.92 0.94 -3.589%
TD3 25.047% 57.41% 30.251% 0.90 0.64 -40.009% 1.20 1.31 0.93 -3.703%
PPO 18.285% 40.006% 30.635% 0.70 0.46 -40.14% 1.16 0.98 0.78 -3.774%

6 Conclusion & Future Works
From the results, we can see that TRPO performed bet-
ter than the other baselines, excluding TD3, in terms
of gaining money. However, TRPO handled risk much
better than TD3 did. Due to stochasticity involving hy-
perparameters, in the future we plan on tuning each
model to its best version with their own unique hy-
perparameters instead of using the same ones for all
of them (for all we know, these may have benefited
TRPO/TD3!). Our implementation of the stock trading
agent involves observations such as the balance, open-
ing high/low prices, and closing price however other
factors like open limit orders can be included in the
state. We can also look to optimize the reward function
beyond the the profit obtained in a particular episode
by including more risk factors which differs depending
on the standard deviation of the data. It would be bene-
ficial to also compare additional reward functions such
as Differential Sharpe Ratio or Asymmetrical Dampin-
ing . Sentiment analysis can be incorporated to better
predict the stock trends that is given as an input in order
to obtain more information for decision-making. Addi-
tionally we seek to train the agents in a different envi-
ronment, particularly the cryptocurrency environment
where risks can be much more rewarding and punish-
ing.

References
Joshua Achiam. 2018. Spinning Up in Deep Reinforce-

ment Learning.

Ayodele Adebiyi, Aderemi Adewumi, and Charles
Ayo. 2014. Comparison of arima and artificial neu-
ral networks models for stock price prediction. Jour-
nal of Applied Mathematics, 2014:1–7.

Akhil Raj Azhikodan, Anvitha G. K. Bhat, and Ma-
matha V. Jadhav. 2019. Stock trading bot using deep
reinforcement learning.

Noam Brown and Tuomas Sandholm. 2019. Superhu-
man ai for multiplayer poker. Science, 365:885 –
890.

Lin Chen and Qiang Gao. 2019. Application of deep
reinforcement learning on automated stock trading.
In 2019 IEEE 10th International Conference on Soft-
ware Engineering and Service Science (ICSESS),
pages 29–33.

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren,
and Qionghai Dai. 2017. Deep direct reinforcement
learning for financial signal representation and trad-
ing. IEEE Transactions on Neural Networks and
Learning Systems, 28(3):653–664.

Yi Feng, Ronggang Yu, and Peter Stone. 2004. Two
stock-trading agents: Market making and techni-
cal analysis. In Peyman Faratin, David C. Parkes,
Juan A. Rodriguez-Aguilar, and William E. Walsh,
editors, Agent Mediated Electronic Commerce V:
Designing Mechanisms and Systems, volume 3048
of Lecture Notes in Artificial Intelligence, pages 18–
36. Springer Verlag.

Scott Fujimoto, Herke van Hoof, and David Meger.
2018. Addressing function approximation error in
actor-critic methods.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor.

Ilya Kostrikov. 2017. pytorch-trpo. https://
github.com/ikostrikov/pytorch-trpo.

Xiao-Yang Liu, Zhaoran Wang Li, Zechu, and
Jiahao Zheng. 2021a. ElegantRL: Massively
parallel framework for cloud-native deep rein-
forcement learning. https://github.com/
AI4Finance-Foundation/ElegantRL.

Xiao-Yang Liu, Hongyang Yang, Qian Chen, Run-
jia Zhang, Liuqing Yang, Bowen Xiao, and
Christina Dan Wang. 2020a. FinRL: A deep rein-
forcement learning library for automated stock trad-
ing in quantitative finance. Deep RL Workshop,
NeurIPS 2020.

Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and
Christina Dan Wang. 2021b. FinRL: Deep rein-
forcement learning framework to automate trading
in quantitative finance. ACM International Confer-
ence on AI in Finance (ICAIF).

Xiao-Yang Liu, Shan Zhong, and Anwar Walid. 2020b.
Deep reinforcement learning for automated stock
trading: An ensemble strategy. SSRN Electronic
Journal.

John Schulman, Sergey Levine, Philipp Moritz,
Michael I. Jordan, and Pieter Abbeel. 2015. Trust
region policy optimization.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms.

Alexander Sherstov and Peter Stone. 2005. Three auto-
mated stock-trading agents: A comparative study. In
P. Faratin and J.A. Rodriguez-Aguilar, editors, Agent
Mediated Electronic Commerce VI: Theories for and
Engineering of Distributed Mechanisms and Systems
(AMEC 2004), volume 3435 of Lecture Notes in Ar-
tificial Intelligence, pages 173–187. Springer Verlag,
Berlin.

Thibaut Théate and Damien Ernst. 2020. An applica-
tion of deep reinforcement learning to algorithmic
trading.

Xing Wu, Haolei Chen, Jianjia Wang, Luigi Troiano,
Vincenzo Loia, and Hamido Fujita. 2020. Adap-
tive stock trading strategies with deep reinforcement
learning methods. Information Sciences, 538:142–
158.

Xu Yan and Zhang Guosheng. 2015. Application of
kalman filter in the prediction of stock price.

Ronggang Yu and Peter Stone. 2003. Performance
analysis of a counter-intuitive automated stock-
trading agent. In Proceedings of the 5th Interna-
tional Conference on Electronic Commerce, ICEC
’03, page 40–46, New York, NY, USA. Association
for Computing Machinery.

Zihao Zhang, Stefan Zohren, and Stephen Roberts.
2019. Deep reinforcement learning for trading.

https://doi.org/10.1155/2014/614342
https://doi.org/10.1155/2014/614342
https://doi.org/10.1109/ICSESS47205.2019.9040728
https://doi.org/10.1109/ICSESS47205.2019.9040728
https://doi.org/10.1109/TNNLS.2016.2522401
https://doi.org/10.1109/TNNLS.2016.2522401
https://doi.org/10.1109/TNNLS.2016.2522401
https://doi.org/10.48550/ARXIV.1802.09477
https://doi.org/10.48550/ARXIV.1802.09477
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.48550/ARXIV.1801.01290
https://github.com/ikostrikov/pytorch-trpo
https://github.com/ikostrikov/pytorch-trpo
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL
https://doi.org/10.2139/ssrn.3690996
https://doi.org/10.2139/ssrn.3690996
https://doi.org/10.48550/ARXIV.1502.05477
https://doi.org/10.48550/ARXIV.1502.05477
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.2004.06627
https://doi.org/10.48550/ARXIV.2004.06627
https://doi.org/10.48550/ARXIV.2004.06627
https://doi.org/https://doi.org/10.1016/j.ins.2020.05.066
https://doi.org/https://doi.org/10.1016/j.ins.2020.05.066
https://doi.org/https://doi.org/10.1016/j.ins.2020.05.066
https://doi.org/10.2991/kam-15.2015.53
https://doi.org/10.2991/kam-15.2015.53
https://doi.org/10.1145/948005.948011
https://doi.org/10.1145/948005.948011
https://doi.org/10.1145/948005.948011
https://doi.org/10.48550/ARXIV.1911.10107

Table 4: Stock Tickers Symbols/Names

Symbol Company Name

AAPL Apple
MSFT Microsoft
JPM JPMorgan Chase & Co.

V Visa
RTX Raytheon Technologies
PG Procter & Gamble
GS Goldman Sach

NKE Nike
DIS Walt Disney
AXP American Express
HD Home Depot

INTC Intel
WMT Walmart
IBM International Business Machines
MRK Merck & Co.
UNH UnitedHealth Group
KO Coca-Cola
CAT Caterpillar
TRV Travelers
JNJ Johnson & Johnson

CVX Chevron
MCD McDonald’s
VZ Verizon Communications

CSCO Cisco Systems
XOM Exxon Mobil
BA Boeing

MMM 3M
PFE Pfizer

WBA Walgreens
DD DuPont de Nemours

Table 5: Technical Indicators

Technical Indicator Definition

Open Price at beginning of trade period
High Maximum Price in trade period
Low Minimum Price in trade period
Close Price at end of trade period

Moving Average Convergence Divergence Relationship between two moving averages
Bollinger Upper Band Std. Dv. Level Above Moving Price
Bollinger Lower Band Std. Dv. Level Below Moving Price

Relative Strength Index (30) Magnitude of recent price changes over 30 days
Commodity Channel Index (30) Current price level relative to average price level over 30 days

Directional Movement Index Magnitude of price directionality
Close Simple Moving Average (30) Average of Closing prices over 30 days
Close Simple Moving Average (60) Average of Closing prices over 60 days

Table 6: Hyperparameters

Hyperparameter Value

Gamma 0.99
Max Stock 100

Initial Capital 1e6
Buy Cost Pct 0.001
Sell Cost Pct 0.001

Start Date 2009− 01− 01
Start Eval Date 2019− 01− 01
End Eval Date 2021− 01− 01

Batch Size 1024
Target Step 4096

Repeat Times 8
Market Dow Jones

Tau 0.97
l2 reg 0.001

max k1 0.01
damping 0.1

Table 7: Collected Measures

Measure Meaning

Annual Return Return of an investment over a year
Cumulative Return Total Return from a certain period of time up to the present
Annual Volatility Variance of returns over a year

Sharpe Ratio Return of an investment compared to its risk
Calmar Ratio Measures risk-adjusted performance

Max Drawdown Indicator of downside risk over a specified time period
Omega Ratio Weighted risk-return ratio for a given level of expected return
Sortino Ratio Variation of the Sharpe ratio that only factors in downside risk

Tail Ratio Ratio between the 95th and (absolute) 5th percentile of the daily returns distribution
Daily Value at Risk Predicts the greatest possible losses over a daily time frame.

Table 8: Agent Backtesting Results

Algorithm Ann. Return Cumu. Return Ann. Volatility Sharpe Ratio Calmar Ratio Max Drawdown Omega Ratio Sortino Ratio Tail Ratio D.V. at Risk
TRPO 23.004% 51.424% 17.735% 1.26 1.74 -13.189% 1.28 1.81 1.07 -2.146%
SAC 16.225% 35.162% 29.095% 0.66 0.42 -39.076% 1.15 0.92 0.94 -3.589%
TD3 25.047% 57.41% 30.251% 0.90 0.64 -40.009% 1.20 1.31 0.93 -3.703%
PPO 18.285% 40.006% 30.635% 0.70 0.46 -40.14% 1.16 0.98 0.78 -3.774%

