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I. ABSTRACT

One of the key problems of autonomous vehicles is
how do we represent the world around us in a digestible
way. There are many modalities to choose from, each of
which gives a different context for a situation, therefore
it is important to choose the modalities which give
the most important information gain. We explore the
impact of adding and removing modalities with respect
to early multimodal fusion paradigms in the context of
conditional imitation learning. We test the impact of
four modalities, RGB, LiDAR, optical flow, and velocity.
Our model consists of two parts, a feature encoder,
and a autoregressive waypoint predictor. There are two
encoder architectures used in our experiments, the first
is simply a pre-trained EfficientNet while the second is
an EfficientNet that feeds into a transformer at the last
block. We find that optical flow improves the model’s
performance although it becomes very unstable while
training due to harsh augmentations of RGB images. Our
conclusion is that optical flow provides key represen-
tation for end-to-end multimodal conditional imitation
learning models; however, perturbations of RGB images
drastically decrease model performance, effectively only
adding noise to the model.

II. INTRODUCTION

Crafting generalized decision-making rules for real-
world Autonomous driving is difficult. Imitation Learn-
ing has become a widely used approach for training
autonomous driving systems. However, this approach is
suitable only when performing simple tasks such as lane-
following or obstacle avoidance. For more complex tasks
such as driving when there are several options available
for the next action, imitation learning begins to become
insufficient. For example, at a road intersection, the
vehicle is unable to predict an optimal decision because
the camera input alone is insufficient to decide whether
to turn left, right, or continue straight. Even then if the
vehicle determines some course of action, it may not be
the desired action of the passenger; Thus the challenge
here is to connect imitation learning and the commands
of the passenger. Conditional imitation learning aims to
address this problem.

Prior works have explored this approach in the context
of conditional imitation learning with context given
through RGB images and LiDAR but have not thor-
oughly investigated the benefit of additional modalities.
Introducing additional modalities can add information to
a model that is not captured from other modalities. These
new modalities can compensate for the shortcomings of
other modalities and give new insights into the reasoning
behind an expert’s actions.

In this project, the goal was to find the impact of opti-
cal flow as a modality in relation to other modalities such
as RGB images and lidar. We utilize the Carla simulator
which provides multiple modalities and we then create
our own optical flow images by using a lightweight
version of RAFT [24]. During our experimentation it
is found that due to optical flow’s highly susceptible
nature to image perturbations it becomes an unreliable
modality in all instances. Simple situations such as
drastic weather changes or blur can lead to failures in
optical flow. The requirement for robust and accurate
models in autonomous driving limit the usefulness of
optical flow in practical applications. RGB images and
LiDAR tend to be competitive with the addition of opti-
cal flow when image degradation’s are present. Thus our
main contribution is the development of an end-to-end
multimodal conditional imitation learning approach, of
which we compare the influence of different modalities
in relation to each other.

III. RELATED WORK

A. Decision Making and Motion Planning

The typical workflow of an autonomous vehicle sys-
tem seeks to process a stream of observations from the
vehicle on-board sensors with high level routing plans
to the executable control output such as steering angles,
accelerations, and braking actions. At the behavioral
layer,is a decision making system that decides the dis-
crete state of mid-level driving actions such as lane-
changing, car-following, and turning left or right. When a
behavioral decision is made, the motion planning system
is in charge of determining a safe, comfortable, and
dynamically feasible continuous trajectory to achieve the
driving action selected from the decision making system.



To this end, Deep Reinforcement learning has demon-
strated significant success in the area of autonomous
driving behavioral decision making, especially for the
cases of highway scenarios and urban intersections.
Moghadam et al.,[20] present an end-to-end contin-
uous deep reinforcement learning trajectory planning
approach towards motion planning that explores the
driving corridors in surrounding moving vehicles and
then generates spatiotemporal trajectories to safely nav-
igate through traffic. In this work, lattice representations
enable predictive planning based on the surrounding
vehicles while also considering the kinematic constraints
and vehicle motion limitations to generate optimal trajec-
tories. It is quite common to add rule-based safety con-
straints that can determine unsafe actions before they are
executed to mitigate the concerns of safety performance.
Hoet et al, [11] explore training a Deep Q-Network
(DQN) in a simulation environment to determine driving
commands and compare the agent’s performances to
the effects of different neural network architectures. In
this work, the Deep Q-Network is provided with the
outputs from the perception system to label the unsafe
behavioral decisions in unprotected turn scenarios. Some
studies train a lane changing decision making system
based on Deep Q-Networks for decision making and then
utilizes a rule-based layer to determine the safety of a
planned trajectory [25] [19] [4]. Contrarily, some other
studies demonstrate learning from human demonstrations
through imitation learning and then introduce perturba-
tions to discourage undesirable behavior [2].

B. Motion Perception

The capacity to perceive environmental states, specif-
ically the existence of surrounding objects and their
motion behavior is crucial for autonomous driving. The
estimation of environmental state requires perception,
which aims to identify the locations and categories of
objects in the surrounding environment. Depending on
the input modality, existing works in motion perception
can be categorized into three areas - 1) 2D object
detection on images [22] [18] [17] [13][32] 2) 3D object
detection on point clouds [30] [12] [29] [33] [28] and
3) fusion based detection [9] [5] [15] [14] [16]. Of the
three areas of motion perception, our work focuses on
multiple combinations of fusion based detection with
RGB, LiDAR, and optical flow.

The application of optical flow relates to our research
on using explicit perception systems to improve the
performance of learned control policies. In [31], Zhou
et al analyze the usefulness of different computer vision
modalities on the performance of sensorimotor control

of a vehicle. In this study, their results show that mod-
els equipped with explicit intermediate representations
such as optical flow train faster, achieve higher task
performance, and generalize better to previously unseen
environments. For autonomous driving, the presence of
moving objects in its environment substantially increases
the difficulty of a control task, requiring fast reaction
time and prediction of the future trajectories of the
moving objects. Using deep reinforcement learning, a
model of the environment’s dynamics can be learned
implicitly. In this paper we investigate the use of op-
tical flow to help the network learn the use of motion
features. Amiranashvili et al [1] explores how the use of
optical flow to learn an explicit representation of motion
improves the quality of the learned controller in dynamic
scenarios. In this study, a small specialized optical flow
network is derived from FlowNet [? ] and is run jointly
with a reinforcement learning network while keeping
computational requirements practical.

In our work, we analyze the usefulness of optical flow
in tandem with other sensor modalities for autonomous
driving. Optical flow can be used to provide estimates
of the absolute velocity of the vehicle based on the flow
of stationary objects such as the ground. Additionally,
the absolute velocity of surrounding vehicles can also
be estimated by using both the relative velocity and the
absolute velocity of the ego-vehicle. In this paper, we
use RAFT for predicting optical flow with a model that
we trained on multiple datasets.

C. End-to-End Learning for Autonomous Driving

The end to end learning approach for self driving
vehicles has been explored since the 1980s. These legacy
works have inspired new proposals based on imitation
learning using CNNs. Modern self-driving cars have
recently employed imitation learning

Recent studies have shown that introducing multi-
modal methods for end-to-end driving can add new infor-
mation which complements the standard RGB images.
[27] incorporates RGB, depth, and velocity into three
different modality fusion architectures. They compare
performance between early, intermediate, and late fusion;
they find that early fusion returns the best results.

[10] proposes to use a network similar to [? ] which
produces semantic segmentation and depth estimation
images, they then concatenate intermediate features from
an optical flow model to the other input images.

They note that providing more information to imita-
tion learning models can lead to worser results, this is
known as causal confusion. To combat this problem they
add a high amount of noise to their inputs and train the
network with a large dropout ratio.
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In comparison to the previous works [21] doesn’t
opt for an early fusion multimodal scheme, instead,
they design an intermediate fusion model based around
transformers. They encode each of their modalities using
different variants of ResNet, they then apply modality
fusion at the end of each block by sending the outputs
to small transformer networks.

The goal of this is to not only have a competent fusion
method but to also be able to explain the effect of each
modality by visualizing attention maps.

We base our work on a behavioral cloning method
called conditional imitation learning. In the CIL paper
[? ], they propose a method that enables the driver
to be able to input high-level commands such as turn
left, right, go straight, break; these high-level commands
enable the model to deal with ambiguous situations such
as intersections and also make it possible to navigate
the world along a specified path. They propose to use
separate branches in their network for each high-level
command thus each sub-network deals with only a single
command.

Instead of providing high-level commands such as
which direction to turn [7] expands on this idea by
instead taking commands in the form of sparse goal
locations, the CIL network is then converted into an
auto-regressive waypoint prediction network. This is
equivalent to modifying CIL to predict waypoints condi-
tionally based on sparse goal locations instead of directly
predicting vehicle actions conditioned on navigational
commands. In recent years this auto-regressive waypoint
prediction variant of CIL has become very popular; [3]
[4] [6] adopt this as their method of choice, all of which
are top contenders on the CARLA leaderboard challenge.

[4] is a knowledge distillation method that first trains
a teacher who has access to ground truth LiDAR birds-
eye view semantic maps, the teacher is trained using
a supervised expert which is handcrafted in CARLA. A
student network consisting of only RGB images as input
is then trained using this teacher as a supervisor.

[6] approaches the autonomous driving problem by
predicting waypoints in birds eye view scene coordinates
based on intermediate attention fields generated through
transformers. [6] learns directly from a birds eye view
representation as opposed to [4] which learns an image
to trajectory mapping.

Our work takes inspiration from [27] [21] [26] where
we opt for a early modality fusion scheme and use a
transformer at the end of our encoder network that learns
an attention mask over features extracted from a 2D
CNN

IV. DATA

Our dataset is created using the CARLA simulator
specifically version 0.9.10, this simulator provides 8
towns for use. 7 of the towns are used to create the
training set and town 5 is used to evaluate on. We utilize
the dataset made public by [21], they utilize a hand
crafted expert agent that uses privileged information.
This expert was created by [4], it is noted by both [4]
[21] that the expert agent does have its faults and as such
[21] has gone on to create their own expert agent which
has not been made public at the time of writing.

The data collected from this expert is recorded at 2 fps
and 256x256 resolution with a front facing RGB camera,
birds eye view LiDAR, and various measurements such
as where the ego vehicle will be in the next four
frames. We then utilize the RGB images given to us
to generate our own optical flow data. Optical flow
is derived from our own lightweight version of RAFT
[24], in all experiments using optical flow we transform
the intermediate flow features into RGB images. Note
that all images in the dataset have come pre-augmented
with the same image augmentations as CIL including
pixel dropout, blurring, Gaussian noise, and color per-
turbations. To add extra variation every other frame
also experiences extreme weather shifts such as from
sunny to heavy rain. Due to all RGB images being pre
augmented the resulting optical flow images are in many
cases of suboptimal quality. Our optical flow network
is not robust to these perturbations which results in
the derived flow being incomprehensible whenever there
are drastic changes in augmentations from proceeding
frames. The data generated for training and evaluation
feature an abnormal amount of adversarial scenarios. It
is a common occurrence in the dataset to find scenarios
such as vehicles running red lights, uncontrolled 4-way
intersections, or pedestrians emerging from occluded
regions to cross the road at random locations. In total
there is 60 GB of data used in training and 11 GB used
in evaluation, this equates to 149k training frames and
29.6k evaluation frames used in evaluation

V. METHOD

In this work we propose two new architectures for
end-to-end driving, we then compare how different
combinations of modalities affect autonomous driving
performance on both networks. Each network consist
of two components, an image encoder for early multi-
modal fusion and an autoregressive waypoint prediction
network. The encoder section is then made up of a
convolutional network that then leads into a transformer;
we do this with the goal of bringing attention to the most
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important high level feature maps. The only difference
between the two networks is the convolutional network
leading into the transformer. The first network uses an
efficientNet-b0 [23] while the second network uses a
simple fully convolutional network. The output of these
encoder networks are then processed in the autoregres-
sive waypoint prediction network which predicts the next
four positions the car should travel towards to reach
its goal. These waypoints and the velocity are then
converted into actions such as the steering angle, and
whether or not to press the gas or brake by using a pid
controller.

Since our goal was to find the effect that optical flow
has on CIL as a modality with respect to autonomous
driving, we tested four different combinations of modal-
ities: 1) [RGB , LiDAR] 2) [Optical Flow, RGB] 3)
[Optical Flow, LiDAR] 4) [Optical Flow, LiDAR, RGB]
on both networks. We test on two separate networks to

(a) RGB (b) LiDAR BEV (c) Optical Flow

Fig. 1: An example of the three types of modalities used
in this project.

see if the modalities tested can be utilized to greater
value with an encoder network that is highly engineered.
We consider the task of autonomous driving where the
goal is to complete a given route safely responding to
adversarial agents and abiding by traffic laws. To achieve
this we use CIL which is an extension of the imitation
learning, in imitation learning we have a policy π that
learns to imitate the behavior of an experts policy π∗.
In our problem an agents policy is mapping inputs to
waypoints which direct the agent towards an end goal. To
learn this policy CIL expands on the imitation learning
algorithm known as behavioral cloning which frames
imitation learning as a supervised learning problem. In
the original CIL architecture they condition on high-level
commands such as left, right, or straight, however we
instead condition on high-level goal locations, these goal
points are provided through GPS coordinates in CARLA.
We create two networks that only differ in the initial
encoder architecture. Network 1 begins with a simple
fully convolutional network similar to that of the original
CIL architecture while network 2 starts with the highly
optimized efficientNet-b0. We use efficientNet because
of its proven performance in comparison to resNet. Both

Fig. 2: Original CIL branched architecture: vehicle
actions are decided by action branches which re-
turn a triplet <steering angle, throttle, and brakes>.
The branch used is decided by the high level com-
mand {turn-left,turn-right,go-straight,continue}. Origi-
nally only RGB images and the ego vehicles speed were
considered.

networks result in a 320 feature maps of dimensions
320x8x8, we then create a learnable positional embed-
ding and project the current velocity into vector using
a linear layer. The flattened feature maps, positional
embedding, and velocity projection are combined then
using element-wise summation. This new tensor is then
fed as input into the transformer which we borrow
the base implementation from [21]. The transformer
applies the attention mechanism to the resulting high-
level intermediate feature maps and velocity projection.
This transformer then returns an output which is the
same dimensions as the input feature maps. This then
leads into the last step of the encoder which reduces the
feature map dimensions to 320x1x1 by average pooling
and flattened into just a 320-dimensional feature vector.

This feature vector is a compact representation of
the observations the agent has made at a time step.
We then feed this vector into the waypoint prediction
network. The waypoint prediction network is the same as
Transfuser [21]. This is implemented by first sending the
encoder output to a MLP which returns a feature vector
of length 64 which is what we use to initalize the hidden
state of the GRU.The update gate takes the current
position and the goal location, The hidden state is then
passed to a linear layer which predicts the waypoints for
4 future time steps. The input to the first GRU unit is
given as (0,0) since the BEV space is centered at the
ego-vehicle’s position. We then use two pid controllers
which are implemented by [4] for lateral and longitudinal
control which allows us to obtain steer, throttle and brake
values. We use the same configuration that they use in
their work.
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Fig. 3: Our Architectures: We consider multiple combinations of a single view RGB image, optical flow,and LiDAR
BEV, as inputs to our network. We compare two architectures that differ only in the conv net section of the network.
In network 2 we use the highly engineered EfficentNet-b0 while in network 1 we create a simple fully convolutional
network similar to that of the original CIL architecture.

We follow [21] [4] and train using a ℓ1 loss function
which compares the predicted waypoints and ground
point waypoints. Let W p

t represent the predicted way-
points and W gt

t represent the ground truth waypoints at
time-step t, then the loss function is defined as

ℓ =

T∑
t=1

∥Wt −W gt
t ∥1 (1)

VI. EXPERIMENTS

In this section we compare the performance of dif-
ferent combinations of modalities on two separate net-
works, to compare performances we utilize the CARLA
simulators scenario runner which creates deterministic
situations, we then compare the number of infractions
each model makes to each other. Our experiments in
the CARLA simulator consist of navigating a predefined
route in a wide variety of landscapes such as freeways,
cities, and residential areas. Each route then has multi-
ple different scenarios which add different adversarial
situations. This allows us to test the ability of our
models to react to many kinds of situations such as
obstacle avoidance, unprotected turns at intersections,
vehicles running red lights, and pedestrians emerging
from occluded regions to cross the road at random
locations. Each situation has a specified amount of time
the agent is given to complete the task while needing
to navigate the route while reacting to dynamic agents.
Performance is measured using three metrics, (1) route
completion, Percentage of the route distance completed
by an agent, (2) infraction count, the amount of traffic

Network 1 Modalities Town 5 Short Town 5 Long

DS RC DS RC

I, F, L - - - -
I, L - - - -
I, F - - - -
L, F 40.44 ± 30.16 80.54 ± 33.72 18.17 ± 17.97 43.83 ± 27.35

Network 2 Modalities Town 5 Short Town 5 Long

DS RC DS RC

I, F, L 10.19 ± 11.70 33.10 ± 15.68 3.53 ± 10.87 21.35± 7.72
I, L 38.56 ± 24.74 65.11 ± 35.84 14.92 ± 16.13 33.76 ± 14.67
I, F 27.23 ± 31.15 50.14 ± 24.67 10.32 ± 15.83 26.49 ± 11.33
L, F 42.48 ± 33.20 85.08 ± 31.01 17.17 ± 20.63 40.83 ± 24.92

TABLE I: Here we present the mean and standard
deviation DS and RC of our networks on town 5 short
and town 5 long, each test comprises of 10 different
routes on town 5. We compare the performance of three
modalities tested RGB Images: I, LiDAR: L, and Optical
Flow: F

infractions the agent accumulates ,(3) driving score: the
product between the route completion and a infractions
penalty score, each infraction has its own penalty score
which is summed at the end of testing to create the
infraction penalty score. We follow [21] and evaluate the
performance of our networks on town 5 on 10 short and
long routes. We cannot make a fair comparison between
our networks and previous works which were submitted
to the CARLA Autonomous Driving Leaderboard [3]
[6] [21] due to not having fully trained any of our
models and because we did not submit our models
to the CARLA leaderboard due to time constraints.
Unfortunately we also were unable to finish training
our network all on modality combinations in time. We
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Method Town 5 Short Town 5 Long

DS RC DS RC

LBC 30.97 ± 4.17 55.01 ± 5.14 7.05 ± 2.13 32.09 ± 7.40
AIM 49.00 ± 6.83 81.07 ± 15.59 26.50 ± 4.82 60.66 ± 7.66

TransFuser 54.42 ± 4.29 78.41 ± 3.75 33.15 ± 4.04 56.36 ± 7.14
Ours 42.48 ± 33.20 85.08 ± 31.01 17.17 ± 20.63 40.83 ± 24.92

TABLE II: Here we compare our best performing model
against 3 different baselines, each baseline is picked due
to their performance in the CARLA online leaderboard
challenge and having tested on the same routes with
similar adversarial situations. It should be noted that this
is only a small subset of tests, a better comparison of our
best network to theirs would be to submit our model to
the complete CARLA online leaderboard which consists
of 100 different secret routes

compare our best model against a few baselines which
have been tested on similar situations. In Table I We find
that network 2 with LiDAR and optical flow performs the
best while network 2 with RGB images and optical flow
performs the worst. We were unable to test all modalities
combinations on network 1 however we hypothesis that
network 1 with RGB images and optical flow would
perform the worst out of all networks. Given this in-
formation we are able to compare our best model to
previous CARLA Leaderboard contenders [21] [4] who
have tested their models on the same routes but using
different scenarios than ours. We find that our network
which uses only LiDAR and optical flow is able to
have comparable results with the baselines, however, the
standard deviation of our network is extremely high in
comparison. It seems as though if no adversarial agents
throw the ego vehicle into unforeseen situations it is then
able to navigate through the routes well. Unfortunately
our agent is unable to recover from these adversarial
situations in a robust manner.

We observe that our model is far more likely to collide
with other vehicles in comparison to the baselines,
during testing we noticed that the ego vehicle tends to
get caught on other vehicles which adds multiple vehicle
infractions. The agent is also unable to handle red lights
very well with any combination of modalities. This is
exaggerated with our network which uses only LiDAR
and optical flow due to it needing to interpret the light
change using only optical flow. Surprisingly our network
which utilized all three modalities performed the worst,
we believe this is because of causal confusion [8]. It is
also noted that the intermediate values of optical flow
can be a better feature than optical flow images [10].

Fig. 4: We show the average number of infractions our
car accumulates during our evaluation on town 5 short,
this is not a exact comparison to the baselines due to us
not testing on the same scenarios

VII. CONCLUSION

During this project we demonstrated that optical flow
is a useful modality to include in end-to-end autonomous
systems, however the true benefit is hard to gauge Due
to many compounding factors such as not fully training
any models, using pre-augmented data, and training the
agent using a sub optimal expert. Given all of these
negatives, utilizing optical flow and LiDAR produced
the best results for which does lead us to believe it
is a modality rich with information that is utilizable in
autonomous driving. There are many things that could
be done to improve this work, the simplest would be
to continue training the networks to their full extent and
then compare them using the CARLA online leaderboard
challenge, this would give a better understanding as to
how each modality truly interacts with one another and
is affected by architecture changes. Another extension
would be to use the intermediate flow as a feature instead
of converting it to RGB. It would also be interesting
to see how we could improve the inclusion of multiple
modalities without harming performance this would al-
low us to be able to include semantic segmentation which
is also a key modality to explore, we believe including
this would drastically improve the red light violations.
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